Parallel computational geometry of rectangles

TitleParallel computational geometry of rectangles
Publication TypeJournal Articles
Year of Publication1992
AuthorsChandran S, Kim SK, Mount D
JournalAlgorithmica
Volume7
Issue1
Pagination25 - 49
Date Published1992///
Abstract

Rectangles in a plane provide a very useful abstraction for a number of problems in diverse fields. In this paper we consider the problem of computing geometric properties of a set of rectangles in the plane. We give parallel algorithms for a number of problems usingn processors wheren is the number of upright rectangles. Specifically, we present algorithms for computing the area, perimeter, eccentricity, and moment of inertia of the region covered by the rectangles inO(logn) time. We also present algorithms for computing the maximum clique and connected components of the rectangles inO(logn) time. Finally, we give algorithms for finding the entire contour of the rectangles and the medial axis representation of a givenn × n binary image inO(n) time. Our results are faster than previous results and optimal (to within a constant factor).

DOI10.1007/BF01758750